19/01/2011

Julius-Maximilians-Universität Würzburg

An die Grenzen gegangen: Neues aus der Plastikelektronik

Elektronik auf der Basis von Kunststoffen kommt im Alltag immer häufiger zum Einsatz. Die grundlegenden Prozesse dahinter sind bisher jedoch nur teilweise verstanden. Physikern der Uni Würzburg ist jetzt ein wichtiger Schritt zum Verständnis der komplexen Eigenschaften dieser Bauelemente gelungen.

Wer ein Smartphone besitzt, kommt möglicherweise tagtäglich mit ihnen in Berührung: Oleds - organische Leuchtdioden oder, auf Englisch, organic light emitting diodes. Ihr Funktionsprinzip: Zwischen zwei Strom führenden Kontakten, der Kathode und der Anode, befinden sich in der Regel mehrere Zwischenschichten aus organischen Materialien, die in der Lage sind, Licht auszusenden.

Oleds kommen zum Einsatz bei Displays in Smartphones, bei Flachbildschirmen oder in neuartigen Leuchtmitteln. Die kunststoffbasierte Elektronik kann aber auch den umgekehrten Weg gehen und in der Photovoltaik Licht zu Strom umwandeln; ebenso ist ihr Einsatz in integrierten Schaltkreisen möglich, beispielsweise in RFID-Chips.

„Elektronik auf der Basis von dünnen Kunststofffilmen ist kostengünstig, effizient und lässt sich vergleichsweise leicht in einfachen Druckverfahren herstellen“, beschreibt Marc Häming die Vorteile der bisweilen so genannten „Plastikelektronik“. Häming ist Wissenschaftlicher Mitarbeiter des Lehrstuhls für Experimentelle Physik 7 der Universität Würzburg und des Gemeinschaftslabors mit dem Karlsruher Institut für Technologie KIT. Zusammen mit Lehrstuhlinhaber Professor Friedrich Reinert und dem Privatdozenten Dr. Achim Schöll hat er die physikalischen Vorgänge in solchen Bauteilen genauer unter die Lupe genommen.

Was das Team dabei entdeckt hat, wurde vor Kurzem in der Fachzeitschrift Physical Review B der American Physical Society publiziert. Darüber hinaus haben die Herausgeber den Artikel ihren Lesern als „editor`s suggestion“ zur Lektüre empfohlen – eine Auszeichnung, die etwa nur jeder zwanzigsten Veröffentlichung zuteil kommt.

Wichtige Effekte an den Grenzflächen

„Für die Eigenschaften dieser elektronischen Bauelemente spielen die Grenzflächen zwischen den unterschiedlichen Schichten eine große Rolle“, erklärt Marc Häming. Sie haben zum Beispiel direkten Einfluss auf den Ladungstransport zwischen den Schichten, die Lichtausbeute von Oleds oder die Erzeugung von elektrischer Ladung in Solarzellen. Unter anderem mit Hilfe der Photoelektronenspektroskopie haben Wissenschaftler die elektronische Struktur solcher Grenzflächen untersucht. Für die Effekte, die sie dabei messen konnten, gab es bislang drei konkurrierende Erklärungsmodelle. „Wir haben uns deshalb ein Schichtsystem überlegt, das es ermöglicht, verschiedene Proben direkt miteinander zu vergleichen“, sagt Häming. Auf diese Weise sei es der Gruppe gelungen, einen dominierenden physikalischen Effekt zu identifizieren und ihn mittels eines vergleichsweise einfachen Modells zu beschreiben.

Der Trick dabei: „Wir haben eine sehr dünne, nur ein Molekül starke Schicht eines bestimmten Farbstoffs an der Grenzfläche zwischen Metallkontakt und Kunststoffschicht eingefügt“, erklärt Häming. Dies führte zu großen Veränderungen der Grenzflächeneigenschaften.

Ein Modellsystem für Forschung und Entwicklung

Was die Arbeit darüber hinaus so interessant macht, ist die Tatsache, dass die Würzburger Physiker damit ein Modellsystem entwickelt haben, an dem „zentrale Aspekte der Wechselwirkung an den Grenzflächen im Detail untersucht werden können“, wie Häming sagt. Durch eine geeignete Wahl der Materialien lassen sich nämlich die Eigenschaften der Grenzfläche systematisch steuern. Wie im Detail, das wollen die Wissenschaftler in den nun folgenden Untersuchungen klären.

Für die Entwicklung neuer Handy-Displays oder Solarzellen hat die Würzburger Arbeit zunächst keine direkten Auswirkungen. „Wir betreiben Grundlagenforschung. Uns geht es darum, die physikalischen Zusammenhänge zu verstehen und zu beschreiben“, sagt Marc Häming. Die gewonnenen Erkenntnisse geben potenziellen Anwendern aber neue Hinweise für die gezielte Entwicklung bestimmter Materialeigenschaften..

Quelle: