30/08/2013

Eberhard Karls Universität Tübingen

Atome und Supraleiter als Quantenschnittstelle auf einem Mikrochip

Die Gesetzmäßigkeiten der Quantenphysik bilden die Basis für die Entwicklung von Hardware für künftige Informationstechnologien. Informationsträger sind Quanten, die in Quantenbits, kurz Qubits, verarbeitet werden. Sie machen die Kommunikation abhörsicher und erlauben außerordentlich schnelle Recherchen in Datenbanken. Qubits sind jedoch recht instabil. Die Professoren József Fortágh, Dieter Kölle, und Reinhold Kleiner vom Physikalischen Institut der Universität Tübingen haben einen neuen elektronischen Baustein entwickelt, der dieser Eigenschaft Rechnung tragen soll: Ihr langfristiges Ziel ist es, Quantensuperpositionszustände wie zum Beispiel die gleichzeitige Überlagerung der klassischen Bits Null und Eins zu verarbeiten, zu übertragen und zu speichern. Über die ersten Forschungsergebnisse auf diesem Weg berichten die Wissenschaftler in der Zeitschrift „Nature Communications“ am 29. August 2013.

Die Tübinger Forscher wollen zwei Systeme koppeln, um von beiden die Vorteile zu nutzen: Supraleitende Schaltungen, die mit Standardtechnologien auf Mikrochips strukturiert werden, können Quanteninformationen schnell verarbeiten, sie jedoch nicht über längere Zeit speichern. Atome, die die kleinsten elektronischen Schaltkreise der Natur darstellen, können hingegen – gruppiert in einem Ensemble – als natürlicher Quantenspeicher dienen. „In der Kombination sollen künftig Informationen aus den supraleitenden Schaltkreisen in ein Atomensemble zur Speicherung übertragen werden“, erklärt József Fortágh.

Die Atome werden durch Magnetfelder über der Chipoberfläche gefangen und in der Schwebe gehalten. Da Supraleiter den elektrischen Strom ohne Widerstand leiten, klingt der Strom in einem supraleitenden Ring nie ab. Auf dieser Grundlage haben die Doktoranden Helge Hattermann, Daniel Bothner und der Postdoktorand Simon Bernon aus den beteiligten Arbeitsgruppen eine komplexe supraleitende Ringstruktur und einen besonders stabilen und störungsfreien Speicher für Atome konstruiert. Die Forscher überprüfen selbst in ihrem System, wie lange Quantenzustände von Atomen in dieser Falle überleben: Sie verwenden die Atome als Uhr.

Den Takt zur Definition der Sekunde gibt uns heute das Cäsiumatom mit etwa neun Milliarden Schwingungen pro Sekunde zwischen zweien seiner Quantenzustände vor. Rubidium, das Atom, das in Tübingen für die Experimente verwendet wird, dient als sekundärer Zeitstandard. Die Präzision einer Atomuhr rührt von der stetigen Überlagerung der Quantenzustände her. Wie nach dem Anstoßen des Pendels einer Schwarzwalduhr klingt auch bei einer Atomuhr die Schwingung nach einiger Zeit ab – nämlich dann, wenn die Quantensuperpositionszustände zerfallen.

Die auf dem supraleitenden Chip integrierte Atomuhr im Tübinger Laboratorium zeigt an, dass Quantensuperpositionszustände von Atomen am Chip über mehrere Sekunden lang erhalten bleiben. Im Vergleich dazu sind Quantenspeicher auf Festkörperbasis mit Kohärenzzeiten im Mikrosekundenbereich flüchtig. „Dieses Ergebnis ebnet den Weg zur Realisierung neuer quantenelektronischen Komponenten für die Informationsverarbeitung“, sagt József Fortágh. Als Nächstes planen die Forscher des CQ Center for Collective Quantum Phenomena an der Universität Tübingen Experimente an Atomen in supraleitenden Mikrowellenresonatoren, die als Datenbus zwischen integrierten Schaltungen und Atomen dienen könnten.

Die Forschungen werden von der Deutschen Forschungsgemeinschaft (DFG Sonderforschungsbereich TRR21) und dem Europäischen Forschungsrat (ERC) gefördert.

Quelle: