23.11.2011

INM - Leibniz-Institut für Neue Materialien gGmbH

Das Leibniz-Institut für Neue Materialien in Saarbrücken eröffnet das Centrum für "Funktionelle Mikro"

Durch den Erwerb eines hochauflösenden Raster-Transmissions-elektronenmikroskops (TEM/STEM) weitet das INM – Leibniz-Institut für Neue Materialien seine Analytik zum Centrum für Funktionelle Mikroskopie (CFM) aus. Damit setzt das INM einen Schwerpunkt, der die Untersuchung von Materialeigenschaften auf atomarer Ebene stärkt. Die Wissenschaftler am INM können nun Materialbildungsprozesse und biologische Mechanismen “aus unmittelbarer Nähe” in bisher nicht erreichten Details beobachten.

Sie werden dabei zukünftig von dem international renommierten Elektronenmikroskopiker Professor Niels de Jonge unterstützt. Er wird ab Anfang 2012 seine Arbeit am INM aufnehmen und das CFM sowie den dann neuen Querschnittsbereich „Innovative Elektronenmikroskopie“ leiten. Damit werden die Kompetenzen im jetzigen Bereich „Physikalische Analytik“ neu gebündelt.

Der Minister für Bundesangelegenheiten und Chef der Staatskanzlei Andreas Storm, Staatssekretär Peter Hauptmann, der Präsident der Universität des Saarlandes Professor Volker Linneweber sowie Ministerialrat Herbert Zeisel vom BMBF begleiten die Gründung des Zentrums.

„Es ist dem INM gelungen, einen internationalen Spitzenforscher als Leiter des neuen Querschnittsbereichs zu gewinnen. Professor Niels de Jonge, der derzeit an der US-Privatuniversität Vanderbilt University forscht, ist ein Pionier in der Entwicklung neuer Mikroskopietechniken. Er wird unser neues JEOL –ARM 200CF-Mikroskop optimal nutzen“, erklärt Eduard Arzt, wissenschaftlicher Geschäftsführer des INM.

Mit dem neuen STEM verfügt das INM über vier hochauflösende Elektronenmikroskope und fünf Rastersondenmikroskope. Zehn Lichtmikroskope für besondere Anwendungen ergänzen die Analytikmöglichkeiten. Damit verfügt das INM über einen umfangreichen Mikroskopie-Park höchster Güte. Zusammen mit den Kompetenzen des neuen Querschnittbereichs „Innovative Elektronenmikroskopie“ will das INM anderen Forschern am Campus, aus der Region sowie international in gemeinsamen Kooperationen und Forschungsprojekten sein Know-how zur Verfügung stellen.

Mit dem STEM sind die Messmöglichkeiten genauer als die Größe von Atomen. Solche Analysen ermöglichen gleichzeitig oder unabhängig voneinander Aussagen darüber, welche Bindungsverhältnisse Atome zueinander haben, welches chemische Element sich dahinter verbirgt und in welchem elektronischen Zustand sich die Atome gerade befinden. „Mit unserem neuen Mikroskop erreicht das Institut auch methodisch eine internationale Spitzenstellung. Damit lassen sich Materialstrukturen aber auch biologische Funktionen bis in atomare Dimensionen abbilden und chemisch untersuchen. Den Fragen nach Härte und Aufbau eines Materials, nach Fehlern in Kristallen und den Folgen für ihre Eigenschaften können wir uns jetzt noch intensiver widmen. Aber auch wie Nanopartikel in lebende Zellen gelangen wird damit im Detail sichtbar werden. Ein Schwerpunkt wird die direkte Beobachtung von Strukturen während ihrer Funktion sein – deshalb die Bezeichnung Centrum für Funktionelle Mikroskopie“, so Arzt weiter.

Im STEM lassen sich Veränderungen und Prozesse in nanostrukturierten technischen und biologischen Materialien darstellen. Es eignet sich vor allem für die Untersuchung von harten Materialien, wie zum Beispiel Keramiken und Metalle oder Mineralien aus der Natur. In der Elektronenmikroskopie wird die Materialprobe mit einem fein gebündelten Strahl aus Elektronen beschossen. Proben können auf unterschiedliche Art untersucht werden: Bei der Rasterelektronenmikroskopie (SEM) wird der Elektronenstrahl Stück für Stück über die Oberfläche der Probe geführt. Die rückgestreuten oder freigesetzten Elektronen geben darüber Auskunft, wie die Oberfläche eines Materials beschaffen ist. In der Transmissions-Elektronenmikroskopie (TEM) durchläuft der Elektronenstrahl eine dünne Probe. Die eingestrahlten Elektronen werden an den Atomen des Probenmaterials gestreut und können in ein Bild übergeführt werden, das die Materialstruktur wiedergibt. Im STEM werden die beiden Verfahren kombiniert, was zu neuen hochaufgelösten Kontrasten führt, die zur Abbildung von harten und weichen Materialien verwendet werden können.

Die Genauigkeit der Messung hängt von der Leistungsfähigkeit des Mikroskops ab, wie zum Beispiel vom Durchmesser des Elektronenstrahls und vom Linsensystem des Gerätes. Je feiner der Elektronenstrahl gebündelt werden kann, umso feiner wird die Auflösung. „Erst dann können wir einzelne Atome und noch mehr sehen“ sagt Herbert Schmid, Leiter der Physikalischen Analytik. Die Quelle für den Elektronenstrahl im neuen STEM ist ein so genannter kalter Feldemitter. „Neben dieser besonderen Elektronenquelle können wir auch Linsenfehler im Gerät korrigieren. Das sind natürlich keine Glaslinsen wie bei Lichtmikroskopen sondern Linsen, die den Elektronenstrahl durch Magnetfelder lenken“ erklärt Schmid. Die Auflösung im JEOL ARM 200CF liegt damit bei 0,8 Ångström. In dieser Form ist das STEM im Saarland und in Europa einzigartig.

Entsprechend sorgfältig und herausfordernd gestaltet sich auch die Probenvorbereitung: Je nach Materialbeschaffenheit schneiden die Analytiker für die Untersuchungen mit verschiedenen Methoden außerordentlich dünne Schichten von einigen 10 nm aus dem Material heraus.

Quelle: