13.06.2014

Max-Planck-Institut für Polymerforschung

Fließendes Wasser energetisiert Mineralien

Die elektrische Ladung mineralischer Oberflächen verändert sich in fließendem Wasser – die Erkenntnis ist auch für das Verständnis geologischer Prozesse relevant. Ein Team des Mainzer Max-Planck-Instituts für Polymerforschung und der belgischen Universität Namur hat jetzt mit einem ausgeklügelten spektroskopischen Verfahren herausgefunden, dass sich die elektrische Ladung von mineralischen Oberflächen unter einer Wasserströmung entscheidend verändert, weil sich dabei manche Ionen bevorzugt aus dem Material lösen.

In der Chemie kommt es oft auf die Oberfläche an – zumindest immer dann, wenn es um Reaktionen an festen Materialien geht. Dass sich die Ladung mineralischer Oberflächen in fließendem Wasser verändert, ist ein bisher unbekannter Faktor, der die Eigenschaften von Oberflächen und somit ihr chemisches Verhalten beeinflusst – und zwar geradezu allgegenwärtig: Wenn Regentropfen eine Fensterscheibe herunter rinnen, wenn Bäche und Flüsse ihr Bett auswaschen, wenn Fels erodiert oder wenn gelöste Reaktionspartner an einem festen Katalysator zusammenkommen.

Noch lässt sich die Bedeutung der neuen Erkenntnisse zwar nicht genau abschätzen. Möglicherweise aber ist sie gewaltig: So besteht der größte Teil der Landoberfläche aus Mineralien, deren Oberflächen beständig oder zumindest immer wieder von fließendem Wasser, seien es Flüsse, Bäche oder Niederschläge überspült werden. Da sich die Reaktivität von Mineralien in fließendem Wasser mit der Ladung ihrer Oberfläche ändert und sie sich zudem – je nach Oberfläche – schneller oder langsamer auflösen, könnten die Befunde des Teams um die Max-Planck-Forscher für die Bodenerosion und die Gesteinsverwitterung relevant sein. Die Verwitterung von Gestein spielt wiederum eine Rolle in der langfristigen Entwicklung des Kohlendioxidgehalts in der Atmosphäre, weil dabei Kohlendioxid gebunden wird.

„Aufgrund unserer Erkenntnisse zu elementaren Lösungsvorgängen von Mineralien wird es nötig, etablierte geologische Theorien zu überprüfen und zu erforschen, welche Auswirkung die Änderung der Oberflächenladung auf Prozesse wie etwa Erosion und Verwitterung hat“, erklärt Mischa Bonn, Direktor am Max-Planck-Institut für Polymerforschung. Denn viele Modelle der Gesteinsverwitterung beruhen oft auf experimentellen Untersuchungen in nicht bewegtem Wasser.

Mischa Bonn und sein Team ließen unterschiedlich saures und basisches Wasser zum einen über Kalziumdifluorid strömen. Dabei lösen sich bevorzugt negativ geladene Fluoridionen von der Oberfläche, während die positiven Kalziumionen dort verbleiben. Welche Ladung die Oberfläche dabei annimmt, hängt davon ab, ob diese in unbewegtem Wasser eine positive oder negative Ladung trägt und wie hoch diese ist. Denn wie Wissenschaftler bereits lange wissen, lädt sich eine mineralische Oberfläche auch auf, wenn sie von unbewegtem Wasser benetzt wird, weil sich dabei manche Ionen besser lösen als andere. Die Ladung hängt davon ab, ob das Wasser sauer oder basisch ist. Wenn die Forscher ihr Experiment mit Kalziumdifluorid in leicht basischem Wasser begannen, in dem die Oberfläche nur leicht negativ geladen ist, konnten sie die Oberfläche durch den Wasserstrom umpolen.

Zum anderen untersuchte das Forscherteam Siliziumdioxid, den Hauptbestandteil von Quarzglas, unter fließendem Wasser. In neutralem und basischem Wasser ist dessen Oberfläche negativ geladen. Bewegt sich das Wasser jedoch, verringert sich die negative Ladung, weil sich negativ geladene Ionen der Kieselsäure lösen. In neutralem Wasser entlädt sich die Oberfläche dabei besonders stark. Strömt saures Wasser über das Mineral, lösen sich ebenfalls Kieselsäure-Moleküle, allerdings ungeladene. So verändert sich die Ladung der Oberfläche nicht.

Möglich wurde die Studie erst, weil Mischa Bonn und sein Team über ein probates Mittel verfügen, um die Ladung der Oberfläche unter Wasser zu untersuchen: Die Summenfrequenz-Spektroskopie. Dabei strahlen die Forscher zwei Laserpulse unterschiedlicher Farbe auf die Grenzfläche zwischen Wasser und Mineral. Die überlagerten Laserstrahlen wechselwirken mit den Wassermolekülen an der Oberfläche besonders stark, wenn sich diese dort akkurat anordnen und nicht so wild durcheinander wirbeln wie im flüssigen Wasser üblich. Genau das ist bei geladenen Oberflächen der Fall. Denn Wassermoleküle besitzen ein negatives und ein positives Ende und richten sich nach dem Prinzip von Anziehung und Abstoßung immer an der benachbarten Ladung aus. Treffen die überlagerten Laserpulse an der Oberfläche auf die geordneten Moleküle, erzeugen sie ein charakteristisches Signal. Das ist umso stärker, je mehr Moleküle an der Oberfläche zur Ordnung gerufen werden und mithin, wie stark geladen die Oberfläche ist.

„Unsere Methode gibt dabei auch Aufschluss über die Ordnung, die durch die elektrische Ladung verursacht wird“, sagt Mischa Bonn. „Daher können wir die Ladung direkt ‚vor Ort‘ bestimmen und gut interpretieren, was an der Oberfläche geschieht. Genau daran haperte es bei anderen Experimenten, bei denen die Ladung eben nicht direkt an der Mineraloberfläche gemessen werden kann“.

Jetzt aber hat er mit seinem Team die elektrische Spur entdeckt, die fließendes Wasser fast überall auf der Welt hinterlässt. Und weil sich mit der Oberfläche eines Minerals auch das fließende Wasser auflädt, handelt es sich bei jedem Fluss um einen Strom im doppelten Wortsinn.

Quelle: