01.06.2010

Halbleiter: Wissenschaftler finden heraus, wie sich magnetische Teilchen schalten lassen

Neuartige Speichermaterialien sollen in Zukunft aus magnetischen Filmen bestehen. Am Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) haben Wissenschaftler erstmals herausgefunden, wie schnell sich magnetische Teilchen steuern lassen.

Christian Stamm und seine Kollegen vom HZB blicken auf sechs Jahre Pionierarbeit am Synchrotronring BESSY II zurück. Sie haben ein weltweit einzigartiges Experiment zum so genannten Femtoslicing aufgebaut und publizieren nun erstmals ein Ergebnis, das in Zusammenarbeit mit einer externen Nutzergruppe erzielt wurde. In der kommenden Ausgabe des Magazins Nature berichten sie zusammen mit ihren Kollegen aus Strasbourg, wie schnell der Magnetismus eines Materials beeinflusst werden kann. Dabei sehen sie, dass die Bewegung eines Elektrons um den Atomkern - das Orbitalmoment - und der Eigendrehimpuls des Elektrons (Spin) auf unterschiedliche Weise reagieren.

"Nur mit dem Femtoslicing kann man die ultraschnellen Vorgänge sichtbar machen, die zum Phänomen des Magnetismus beitragen", begründet Christian Stamm den Aufwand, mit dem mehrere HZB-Wissenschaftler das Experiment an der Berliner Synchrotronquelle BESSY II aufgebaut haben. Sie schießen dabei ultrakurze Laserpulse auf die Elektronen, die sich im Speicherring mit nahezu Lichtgeschwindigkeit bewegen. Die getroffenen Elektronen unterscheiden sich von denen, die nicht mit dem Laserstrahl in Berührung kamen. Das Röntgenlicht, das sie während ihres Umlaufs im Speicherring aussenden - das spezielle Synchrotronlicht - trägt nun ebenfalls die Charakteristik, die das Laserlicht mitbringt. Mit diesen ultrakurzen Röntgenblitzen wird schließlich die magnetische Probe untersucht. Das besondere an BESSY II: Nur hier steht den Nutzern aus aller Welt so genanntes zirkular polarisiertes Röntgenlicht für Slicing-Experimente zur Verfügung. Für Untersuchungen von Spin und Orbitalmoment, die dem Magnetismus zugrunde liegen, ist dies unbedingt erforderlich.

Die Ergebnisse, die Christian Stamm und seine Kollegen mithilfe der Femtoslicing-Experimente vorstellen, bringen eine fundamentale Erkenntnis zutage: "Wir konnten zeigen, auf welchem Weg und wie schnell die zugeführte Energie im Elektronenspin ankommt", sagt der Physiker. Letztlich also, wie schnell sich der Magnetismus von außen beeinflussen und schalten lässt.

Für die Spintronik und die Halbleitertechnologie, die Computer zukünftig auf der Basis von "Spin up" und "Spin down" als Pendant zu den Kenngrößen "1" und "0" bauen wollen, könnte diese Erkenntnis ein weiterer wichtiger Meilenstein sein, denn sie zeigt, wie sich die Spin-Änderung im Detail vollzieht. "Die Bewegung der Elektronen auf ihrer Kreisbahn ändert sich sehr schnell, wenn Energie zugeführt wird", erläutert Christian Stamm. Im Gegensatz zur Spin-Reaktion, die verzögert erfolge. Das heißt: "Will man den Elektronenspin ändern, muss zuerst die Orbitalbewegung der Elektronen zerstört werden. Erst dann dreht sich der Spin."

www.k-online.de