26.02.2013

Leibniz Universität Hannover

Schneller Rechnen mit kollektiven Quanten-Bits

Physiker aus Harvard und Hannover entwickeln neues Verfahren für Quantencomputer

Quantencomputer könnten bestimmte Aufgaben deutlich schneller lösen als klassische Computer, ihre Realisierung in einem für praktische Anwendungen relevanten Umfang gestaltet sich jedoch schwierig. Dies könnte sich nun mit einem von Physikern der Leibniz Universität Hannover entwickelten Verfahren für festkörperbasierte Quantencomputer ändern. Ihre Ergebnisse präsentieren die Wissenschaftler um Dr. Hendrik Weimer vom Institut für Theoretische Physik jetzt in der Fachzeitschrift Physical Review Letters.

Während die Kontrolle von einzelnen Quanten-Bits („Qubits“) inzwischen mit großer Präzision möglich ist, stellt die Realisiserung größerer Netzwerke mit einer Vielzahl von Qubits eine bisher ungelöste Herausforderung dar. Dies trifft insbesondere auf Quantencomputer basierend auf magnetischen Defekten in Festkörpern zu, da die magnetische Wechselwirkung zwischen den einzelnen Qubits zu schwach ist. Hier konnten die Physiker nun zeigen, dass die Bündelung von circa 100 Defekten in ein einzelnes kollektives Qubit diese Beschränkung aufheben kann. Bei der korrekten Wahl eines externen Magnetfelds verlieren die magnetischen Eigenschaften der einzelnen Defekte ihre individuelle Natur und verhalten sich als ununterscheidbare Einheit. Solche kollektiven Quantensysteme sind für stark erhöhte Wechselwirkungseigenschaften bekannt und ermöglichen dadurch schnellere Operationen in einem Quantencomputer.

Während die vorgestellte Methode für eine Vielzahl von festkörperbasierten Qubits anwendbar ist, konnten die Wissenschaftler durch eine detaillierte Simulation für Stickstoff-Fehlstellen-Zentren in Diamant nachweisen, dass damit deutlich größere Quantennetzwerke als bisher realisiert werden können. Hendrik Weimer erläutert: „Bereits 50 kollektive Qubits reichen für unmittelbare Anwendungen in der Simulation von stark korrelierten Quantensystemen.“

Quelle: