Innovation@K

Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Bartningstr. 47 , 64289 Darmstadt
Deutschland

Telefon +49 6151 705-0
Fax +49 6151 705-214
info@lbf.fraunhofer.de

Messehalle

  • Halle 7 / SC01
 Interaktiver Hallenplan

Hallenplan

K 2016 Hallenplan (Halle 7): Stand SC01

Geländeplan

K 2016 Geländeplan: Halle 7

Unsere Produkte

Innovation@K
Zukunftsperspektiven & Globale Herausforderungen:
Ressourceneffizienz

Digitalisierung der Wertschöpfungskette:
Individualisierte Produktion

Produktkategorie: Wissenschaft und Beratung

Aufklärung in der Schmelzzone: Neuartiges Werkzeug hilft, Compoundierprozess zu optimieren

Rotation, Scherung, Wärme und Druck – soweit ist klar, was es zur Compoundierung von Kunststoffen mithilfe von Doppelschneckenextrudern braucht. Schon seit langem haben sich die Spezialmaschinen in der Kunststoffproduktion bewährt. Aus Forschungssicht blieb bisher allerdings die Frage unbeantwortet, welche Mechanismen beim Anschmelzen und dem damit verbundenen Energieeintrag in die Schmelzzone wirken. Wissenschaftlern aus dem Leistungsfeld Polymertechnik des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF ist es gelungen, mit innovativen Messtechniken einen Einblick in diese Prozesse zu gewinnen. Ihre Erkenntnisse werden der Compoundier-Industrie in Zukunft eine sehr material- und prozessspezifische Gestaltung der Schmelzzone ermöglichen. Unter anderem wird es bei gleicher Prozesssicherheit möglich sein, den Energieeintrag in das Polymer auf das notwendige Minimum zu reduzieren und den gesamten Prozess wesentlich profitabler zu gestalten. In dem optimierten Prozess wird das Polymer thermisch und mechanisch weniger beschädigt, was wiederum die mechanischen Eigenschaften und die chemische Beständigkeit des Produktes verbessert und die Emissionen reduziert, die durch die Verarbeitung entstehen.

Mehr Weniger

Innovation@K
Zukunftsperspektiven & Globale Herausforderungen:
Ressourceneffizienz

Produktkategorie: Wissenschaft und Beratung

Fraunhofer LBF entwickelt neuartigen Spritzgießprozess: Faserverbund-Sandwichbauteile mit hochfesten Funktionalitäten

Endlosfaserverstärkte Thermoplaste dringen zunehmend in Anwendungsbereiche isotroper metallischer Werkstoffe und duroplastischer Faser-Kunststoff-Verbunde (FKV) vor. Eine Ursache ist das wachsende Angebot hochqualitativer thermoplastischer Faser-Matrix-Halbzeuge, wie etwa Organobleche und unidirektionaler Tapes (UD-Tapes). Beim Einsatz endlosfaserverstärkter Thermoplaste machen sich Bauteilhersteller deren hohe gewichtsspezifische mechanische Eigenschaften zu Nutze. Abgesehen von Vorteilen gegenüber duroplastischen FKV hinsichtlich der Arbeitshygiene, Lager- und Rezyklierfähigkeit, profitieren sie vor allem von den kurzen Verarbeitungstaktzeiten und einfachen Weiterverarbeitungsmöglichkeiten, beispielsweise durch Schweißen, Thermoformen oder Umspritzen.

Trotz der hohen Leichtbaupotentiale endlosfaserverstärkter Thermoplaste war es bislang allerdings schwierig, diese Werkstoffklasse mit integrierten Funktionen oder Verrippungen in kostensensitiven Anwendungsbereichen einzusetzen. Dies liegt daran, dass etablierte Fertigungstechnologien häufig verhältnismäßig dickwandige Faser-Matrix-Halbzeuge verwenden, was zu hohen Materialkosten führt. Einen weiteren Nachteil stellt die Anbindungsqualität von Funktionalitäten und Verrippungen dar, welche lediglich auf das heiße Faser-Matrix-Halbzeug aufgespritzt werden. Das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF hat nun einen neuen Spritzgießprozess entwickelt, der diese Nachteile umgeht. Damit lässt sich in einem Prozessschritt ein endlosfaserverstärkter thermoplastischer Sandwich-Verbund mit integrierten Funktionalitäten und Verrippungen herstellen. Die Vorteile dieser Technologie liegen in den niedrigen Werkstoffkosten bei gleichzeitig hoher Bauteilbelastbarkeit sowie in der gesteigerten Anbindungsfestigkeit von Funktionalitäten, da diese homogen mit dem Kern verbunden sind. Weiterhin handelt es sich dabei um einen kosteneffizienten Fertigungsprozess, da die nötigen Taktzeiten zur Herstellung eines solchen funktionalisierten Sandwich-Verbundes sehr gering sind. Aufgrund dessen eignet sich das Verfahren hervorragend für die Fertigung von Großserienbauteilen.

Nachteile der Overmolding-Technik umgangen

Seit einigen Jahren wird an neuen Verfahren gearbeitet, welche die Formgebung von Organoblechen durch Thermoformen mit der Aufbringung von Funktionalitäten und Verrippungen kombinieren. Dabei werden die Verrippungen auf das heiße Organoblech im Spritzgießwerkzeug aufgespritzt (Overmolding-Technik). Nachteilig ist dabei, dass häufig dickwandige Faser-Matrix-Halbzeuge verwendet werden und dadurch hohe Materialkosten entstehen. Darüber hinaus stellen die aufgespritzten Strukturen eine Fügung dar, deren Anbindung an das Organoblech eine mögliche Schwachstelle bedeutet.

Die am Fraunhofer LBF entwickelte Technologie umgeht beide Nachteile der bisherigen Overmolding-Technologie. Sie basiert auf einem Spritzgießprozess, bei welchem sehr dünnwandige und damit kostengünstige Faser-Matrix-Halbzeuge in die bei Biegebelastung hochbeanspruchten Randlagen eines thermoplastischen Sandwich-FKV angeordnet werden. Der niedrig beanspruchte Kern wird durch die thermoplastische Schmelze ausgefüllt, welche ebenso in einem Prozessschritt Funktionalitäten und Verrippungen an der Oberfläche des Sandwich-Bauteils ausformt. Dabei werden diese homogen aus dem Kern heraus durch die Deckschichten hindurch gebildet, ohne dabei eine Fügestelle zu erzeugen.

Mehr Weniger

Innovation@K
Neue Werkstoffe:
Additive & Füllstoffe für Kunststoff und Kautschuk

Digitalisierung der Wertschöpfungskette:
Individualisierte Produktion

Produktkategorie: Additive, andere, Wissenschaft und Beratung

Brände umweltfreundlich vermeiden: Neue Entwicklungen bei Flammschutzmitteln

Viele Industriezweige fordern von den dort eingesetzten Kunststoffen zunehmend umweltfreundliche, flammhemmende Lösungen. Halogenfreie und polymere Flammschutzmittel gelten hier als Innovationstreiber. Das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF setzt genau dort an und unterstützt seine Kunden, das Brandverhalten ihrer Kunststoffe genau kennenzulernen und zu beeinflussen. Im Fraunhofer LBF können Flammschutzmittel hergestellt, in Proben eingearbeitet und dispergiert werden. Wir analysieren das unterschiedliche Brandverhalten verschiedenster Kunststoffproben mit und ohne Additive. Beispielsweise werden in Prüfeinrichtungen zur Beurteilung von Kunststoffen hinsichtlich ihrer Brandgefahr Versuche nach der Prüfnorm UL-94 durchgeführt.

Wissenschaftler im Fraunhofer LBF können Kunststoffe auch mit zusätzlichen Funktionalitäten versehen, beispielsweise zum Schutz vor Strahlung und Witterungseinflüssen sowie im Interesse reduzierten Brandverhaltens, zur Entwicklung spezieller optischer Eigenschaften, elektrischer und thermischer Leitfähigkeit, sensorischer und aktuatorischer Funktion oder Selbstheilung.

Forschung für nachhaltiges Recycling von halogenfrei flammgeschützten Kunststoffen

Nach Vorgaben der EU soll das Recycling von Kunststoffabfällen höherwertiger werden und die Recyclingquoten weiter steigen, Zielvorgabe für 2020 sind 70 Prozent. Umso wichtiger ist es, für ein wirtschaftliches Recycling rechtzeitig die notwendigen grundlegenden Untersuchungen durchzuführen. 2016 hat das Fraunhofer LBF ein neues Forschungsvorhaben zum Recycling von halogenfrei flammgeschützten Kunststoffen gestartet. Das Projekt wird erstmalig Antworten auf die Recyclingfähigkeit von halogenfrei flammgeschützten Kunststoffen geben. Vor allem klein- und mittelständische Unternehmen sollen dann Kosten einsparen und qualitativ verbesserte Produkte mit hohem Sicherheitsstandard produzieren können.

Mehr Weniger

Innovation@K
Zukunftsperspektiven & Globale Herausforderungen:
Ressourceneffizienz

Neue Werkstoffe:
Additive & Füllstoffe für Kunststoff und Kautschuk

Digitalisierung der Wertschöpfungskette:
Simulation

Leichtbau:
Composites

Produktkategorie: Wissenschaft und Beratung

Polymertechnik mit System: Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Mit dem Forschungsbereich Kunststoffe, hervorgegangen aus dem Deutschen Kunststoff-Institut DKI, begleitet und unterstützt das Fraunhofer LBF seine Kunden entlang der gesamten Wertschöpfungskette von der Polymersynthese über den Werkstoff, seine Verarbeitung und das Produktdesign bis hin zur Qualifizierung und Nachweisführung von komplexen sicherheitsrelevanten Leichtbausystemen. Der Forschungsbereich ist spezialisiert auf das Management kompletter Entwicklungsprozesse und berät seine Kunden in allen Entwicklungsstufen. Hochleistungsthermoplaste und Verbunde, Duromere, Duromer-Composites und Duromer-Verbunde sowie Thermoplastische Elastomere spielen eine zentrale Rolle. Der Bereich Kunststoffe ist ein ausgewiesenes Kompetenzzentrum für Additivierungs-, Formulierungs- und Hybrid-Fragestellungen. Umfassendes Know-how besteht in der Analyse und Charakterisierung von Kunststoffen und deren Veränderung während der Verarbeitung sowie in der Methodenentwicklung zeitaufgelöster Vorgänge bei Kunststoffen.

Unsere Themen auf der K 2016: Flammschutz, Recycling halogenfrei flammgeschützter Kunststoffe, Additive, integrative Simulation, Polymeranalytik, verständnisbasierte Produktentwicklung, rationale Materialentwicklung.

Forschung mit System!
Das Fraunhofer LBF in Darmstadt entwickelt, bewertet und realisiert im Kundenauftrag maßgeschneiderte Lösungen für maschinenbauliche Komponenten und Systeme, vor allem für sicherheitsrelevante Bauteile und Systeme. Dies geschieht in den Leistungsfeldern Schwingungstechnik, Leichtbau, Zuverlässigkeit und Polymertechnik. Neben der Bewertung und optimierten Auslegung passiver mechanischer Strukturen werden aktive, mechatronisch-adaptronische Funktionseinheiten entwickelt und prototypisch umgesetzt. Parallel werden entsprechende numerische sowie experimentelle Methoden und Prüftechniken vorausschauend weiterentwickelt. Die Auftraggeber kommen aus dem Automobil- und Nutzfahrzeugbau, der Schienenverkehrstechnik, dem Schiffbau, der Luftfahrt, dem Maschinen- und Anlagenbau, der Energietechnik, der Elektrotechnik, dem Bauwesen, der Medizintechnik, der chemischen Industrie und weiteren Branchen. Sie profitieren von ausgewiesener Expertise der über 400 Mitarbeiter und modernster Technologie auf mehr als 11 560 Quadratmetern Labor- und Versuchsfläche. 

Mehr Weniger

Innovation@K
Zukunftsperspektiven & Globale Herausforderungen:
Ressourceneffizienz

Neue Werkstoffe:
Additive & Füllstoffe für Kunststoff und Kautschuk

Digitalisierung der Wertschöpfungskette:
Individualisierte Produktion

Produktkategorie: Wissenschaft und Beratung

Vom Licht gestreut: Schnelle Methode bestimmt Phasenverhalten von Mischungen

Mehrkomponentige Materialien wie beispielsweise Polymermischungen zu entwickeln, war bislang mit einem beträchtlichen Aufwand verbunden. Denn dazu muss das Mischungsverhalten in Abhängigkeit von der Temperatur bekannt sein und die nötigen Phasendiagramme sind zu ermitteln. Das bedeutet: Es muss eine Vielzahl unterschiedlicher Mischungen präpariert und für jede dieser Mischungen die Phasenübergangstemperatur bestimmt werden. Um dieses umfangreiche Prozedere zu vereinfachen und zu beschleunigen, haben das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF und die Universität Jena eine Hochdurchsatz-Methode zur schnellen Bestimmung des Phasenverhaltens von Polymermischungen entwickelt. Initiiert hatte das Projekt der Reifenhersteller Michelin beim Dutch Polymer Institute (DPI). Die entwickelte Methode war zunächst für Gummimischungen ausgelegt, ist jedoch weit darüber hinaus anwendbar. Das System zur Hochdurchsatz-Kleinwinkellichtstreuung wurde für den Einsatz in Industrielabors entwickelt und lässt sich auf besondere Bedürfnisse der Anwender konfigurieren

Mehr Weniger

Innovation@K
Zukunftsperspektiven & Globale Herausforderungen:
Ressourceneffizienz

Digitalisierung der Wertschöpfungskette:
Individualisierte Produktion

Produktkategorie: Wissenschaft und Beratung

Auf dem Weg zu „low-emission-plastics“: Entgasung von Kunststoffcompounds optimiert

Runter mit den Emissionen heißt es auch für die Kunststoffindustrie. Getrieben durch strenge Grenzwerte, die beispielsweise die Automobilindustrie vorgibt, wächst der Druck, emissionsreduzierte Kunststoffrezepturen zu entwickeln. Gleichzeitig sollen aber auch die Kosten im Rahmen bleiben. Diese gegensätzli­chen Ansprüche machen die Prozessentwicklung emissionsoptimierter Kunststoffcompounds zur großen Herausforderung. Im Rahmen eines Forschungs­vorhabens hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuver­lässigkeit LBF den Entgasungsvorgang bei der Compoundierung mit gleichläufigen Doppelschneckenextrudern stark optimiert. Den Anteil flüchtiger organischer Verbindungen konnten die Wissen­schaftler auf diese Weise um rund 70 Prozent, verglichen zum Stand der Tech­nik, reduzieren. Damit können Unternehmen der Compoundierindustrie zeitnah auf Forderungen nach einem geringeren Gehalt an flüchtigen Bestandteilen im Compound reagieren, was sich direkt positiv auf den wirtschaftlichen Erfolg auswirkt. Mit dem Ziel deut­lich emissionsärmerer Kunststoffprodukte wird das Fraunhofer LBF seine Unter­suchungen künftig entlang der Wertschöpfungs­kette auf den Spritzgießprozess ausweiten.  

Mehr Weniger

Innovation@K
Zukunftsperspektiven & Globale Herausforderungen:
Ressourceneffizienz

Digitalisierung der Wertschöpfungskette:
Individualisierte Produktion

Produktkategorie: Wissenschaft und Beratung

Kunststoffbauteile besser Entformen: Fraunhofer LBF entwickelt neuartiges Spritzgieß-Messwerkzeug

Bei der Produktion optischer Kunststoffbauteile zählt das Entformen zu den anspruchsvolleren Schritten. Mehr Kenntnisse über die hier wirkenden Adhäsionskräfte helfen, die Entformung zu verbessern, was sich positiv auf die Möglichkeiten beim Produktdesign auswirken kann und Kosten senkt. Fraunhofer-Wissenschaftler haben im Rahmen eines IGF-Forschungsvorhabens ein neuartiges Spritzgieß-Messwerkzeug entwickelt. Damit lassen sich Adhäsionskräfte quantifizieren sowie innovative antiadhäsive Beschichtungen und Formmasserezepturen analysieren. Davon profitieren Hersteller von Maschinen- und Werkzeugkomponenten sowie Entwickler antiadhäsiver Beschichtungssysteme und Formmassen

Mehr Weniger

Innovation@K
Zukunftsperspektiven & Globale Herausforderungen:
Ressourceneffizienz

Neue Werkstoffe:
Additive & Füllstoffe für Kunststoff und Kautschuk

Produktkategorie: Additive, andere, Wissenschaft und Beratung

Elektrochemische Messung: Korrosivität von Kunststoffschmelzen schnell bestimmen

Verschleiß und Korrosion sind gravierende Vorkommnisse in der Kunststoffverarbeitung. Wer ein leistungsfähiges Compound entwickeln will, muss häufig eine Vielzahl an Formulierungen durch Schmelzecompoundierung zubereiten und im Hinblick auf die gewünschten Eigenschaften und gegebenenfalls die Korrosivität der Schmelze testen. Analog stellt sich das Problem bei der Auswahl des Werkstoffes für ein Aggregat, mit dem eine korrosive Formulierung verarbeitet werden soll. Hierzu ist gegebenenfalls eine größere Zahl unterschiedlicher Legierungen zu prüfen. Wissenschaftler am Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF haben jetzt ein neues elektrochemisches Verfahren entwickelt, das vorteilhaft für die Entwicklung neuer Formmassen ist, da es mit geringen Materialmengen auskommt. Damit stehen am Fraunhofer LBF nun zwei Methoden zur Prüfung der Korrosivität von Kunststoffformmassen oder der Korrosionsbeständigkeit von Stählen zur Verfügung: Neben dem neuen Verfahren der bereits etablierte Plättchentest. Den Einsatz beider Verfahren bietet das Institut als Dienstleistung an. Darüber hinaus können Kunden für die Nutzung des elektrochemischen Verfahrens eine Lizenz erhalten.

Mehr Weniger

Innovation@K
Zukunftsperspektiven & Globale Herausforderungen:
Ressourceneffizienz

Digitalisierung der Wertschöpfungskette:
Individualisierte Produktion

Leichtbau:
Hybride Werkstoffe, Prozesse und Systeme

Produktkategorie: Additive, andere, Wissenschaft und Beratung

Mit moderner Schadensanalytik verstehen, wie Kunststoffe altern

Sciherheit und Beständigkeit von Kunststoffen:  Neue Verfahren des Fraunhofer LBF verbessern die Schadensanalytik an Kunststoffprodukten, weil sie aufgrund einfacher Probenvorbereitung, hoher Empfindlichkeit und Ortsauflösung frühzeitig Materialveränderungen erkennen. Durch die direkte Verknüpfung des sichtbaren Bilds mit spektroskopischer Information lassen sich Parameter wie Abbaugrad des Polymeren, Additivgehalt und Morphologie ortsaufgelöst mit hoher Präzision untersuchen.

Moderne bildgebende Analysemethoden sind leistungsfähige Hilfsmittel bei der Ursachenklärung von Schadensfällen an Kunststoffkomponenten. Sie sind ein wertvolles Instrument bei der Statusanalyse von Bauteilen, die belastenden Betriebsbedingungen wie korrosiven Medien, Wärme oder Strahlung ausgesetzt waren. Das Fraunhofer LBF hat in intensiver Forschungsarbeit Messprotokolle für eine große Bandbreite von Compounds thermoplastischer Kunststoffe und Elastomeren erarbeitet, die es ermöglichen, mit höchster Ortsauflösung die räumliche Verteilung von Materialparametern in Bauteilen zu bestimmen. Dies hat die Aufklärung von Schadensfällen deutlich verbessert. Durch Nutzung der aufgebauten Datenbanken und der umfassenden Expertise auf dem Gebiet der Materialanalytik lassen sich die Einsatzmöglichkeiten von Polymeren in hoch belastenden Anwendungen zukünftig sehr viel zuverlässiger abschätzen. Die neuen Möglichkeiten der ortsaufgelösten Materialanalyse werden am Fraunhofer LBF systematisch zur Entwicklung neuer Polymerrezepturen eingesetzt. Dies reicht von der Auswahl der geeigneten Additivierung über die Optimierung der Verarbeitung bis hin zum Einsatztest.

Mehr Weniger

Firmennews

Datum

Thema

Download

30.09.2016

Mit moderner Schadensanalytik verstehen, wie Kunststoffe altern

Immer mehr Sicherheitsbauteile bestehen aus Kunststoffen. Im täglichen Gebrauch müssen sie nicht nur aggressiven Medien standhalten, sondern auch hohe mechanische Lasten ertragen. Die Frage, wie beständig - und wie sicher - diese Kunststoffe dabei sind, untersucht das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF mit bildgebenden analytischen Techniken. Diese Verfahren verbessern die Schadensanalytik an Kunststoffprodukten, weil sie aufgrund einfacher Probenvorbereitung, hoher Empfindlichkeit und Ortsauflösung frühzeitig Materialveränderungen erkennen. Durch die direkte Verknüpfung des sichtbaren Bilds mit spektroskopischer Information lassen sich Parameter wie Abbaugrad des Polymeren, Additivgehalt und Morphologie ortsaufgelöst mit hoher Präzision untersuchen. Auf der Messe K 2016 in Düsseldorf, 19.-26.10.2016, beteiligt sich das Fraunhofer LBF in Halle 7 am Fraunhofer-Stand SC01. 

Moderne bildgebende Analysemethoden sind leistungsfähige Hilfsmittel bei der Ursachenklärung von Schadensfällen an Kunststoffkomponenten. Sie sind ein wertvolles Instrument bei der Statusanalyse von Bauteilen, die belastenden Betriebsbedingungen wie korrosiven Medien, Wärme oder Strahlung ausgesetzt waren. Das Fraunhofer LBF hat in intensiver Forschungsarbeit Messprotokolle für eine große Bandbreite von Compounds thermoplastischer Kunststoffe und Elastomeren erarbeitet, die es ermöglichen, mit höchster Ortsauflösung die räumliche Verteilung von Materialparametern in Bauteilen zu bestimmen. Dies hat die Aufklärung von Schadensfällen deutlich verbessert. Durch Nutzung der aufgebauten Datenbanken und der umfassenden Expertise auf dem Gebiet der Materialanalytik lassen sich die Einsatzmöglichkeiten von Polymeren in hoch belastenden Anwendungen zukünftig sehr viel zuverlässiger abschätzen. Die neuen Möglichkeiten der ortsaufgelösten Materialanalyse werden am Fraunhofer LBF systematisch zur Entwicklung neuer Polymerrezepturen eingesetzt. Dies reicht von der Auswahl der geeigneten Additivierung über die Optimierung der Verarbeitung bis hin zum Einsatztest.

Schädigungsprozesse besser erfassen

Polymere sind häufig Betriebsbedingungen ausgesetzt, die zu einem Materialabbau führen können. Zu den chemischen Einflussfaktoren zählen flüssige und gasförmige Umgebungsmedien, zu den physikalischen Größen die Temperatur und mechanische Last (Druck, Spannung). Sie können aufgrund der Extraktion stabilisierender Additive, eindringender Medien und Veränderungen der Molekulargewichtsverteilung des Polymeren zu Materialveränderungen führen. Ein klassischer Analyseansatz mit mechanischer Probenpräparation, gefolgt von molekularanalytischen Techniken, wie Gelpermeationschromatografie (GPC) und Messung der oxidativen Induktionszeit (OIT) der einzelnen Proben, ist nicht nur arbeitsaufwendig, sondern wird vor allem der notwendigen Ortsauflösung nicht gerecht.

In den vergangenen Jahren ist eine erhebliche Verbesserung der ortsaufgelösten Materialanalytik durch bildgebende analytische Methoden erreicht worden. Sie wurden so angepasst, dass die bei der Schädigung von Polymeren ablaufenden Teilreaktionen detailliert untersucht werden können. Grundsätzlich wird dazu Lichtmikroskopie mit einer spektroskopischen Technik gekoppelt, deren Wahl von der jeweiligen Fragestellung bestimmt wird.

Die Extraktion von Additiven und das Eindringen von Medien lassen sich gut mittels Infrarotmikroskopie verfolgen. Dabei wird ein vorgegebenes Areal auf der Probe  gerastert und an jedem Punkt ein Spektrum aufgenommen. Je nach Messmethode sind Transmissions- und Reflexionsspektren möglich. Zur Auswertung wird aus den hyperspektralen Datensätzen die Intensität eines charakteristischen Wellenzahlbereiches über der Fläche in Konturplots abgebildet. Auf diese Weise ermöglicht IR-Mikroskopie eine Ortsauflösung bis in den Mikrometerbereich.

Ortsauflösungen im Nanometerbereich liefert die Ramanmikroskopie, so dass einzelne Sphärolithe von Polymeren und Additiv-Agglomerate einer eingehenden Untersuchung zugänglich werden. Hier ist die Ramanmikroskopie in der Lage, die flächige Verteilung interessierender Merkmale wie etwa der chemischen Zusammensetzung oder der Morphologie des Polymeren detailliert abzubilden. Die Längenskala im Nanometerbereich erlaubt es dabei Materialveränderungen bereits im Frühstadium zu erkennen. Auch Materialstrukturen in Fügenähten werden hierdurch einer eingehenden Bewertung zugänglich.

Mittels der TrueSurface Option wird vor der Messung das Oberflächenrelief der Probe aufgenommen. Während der mikroskopischen Messung wird dann der Fokus kontinuierlich angepasst. Hierdurch ist die Ramanmikroskopie in der Lage, Proben mit unregelmäßiger Topografie, wie beispielsweise Bruchflächen, problemlos zu untersuchen. Auch dünne Beschichtungen können sehr detailliert betrachtet werden. Aufgrund ihres konfokalen Messprinzips ermöglicht die Ramanmikroskopie sogar eine dreidimensionale Analyse auf zerstörungsfreiem Weg, wie Abb. 2 zeigt.

Ein Teilschritt der Schädigung als Folge von Medienbelastung ist häufig auch die Extraktion von Füllstoffen und Pigmenten oder das Eindringen von ionischen Kontaminationen. Dies wird oft mittels der Kombination von Elektronenmikroskopie und energiedispersiver Röntgenspektroskopie (REM-EDX) untersucht. Eine weitere Technik dafür ist Röntgenfluoreszenzmikroskopie (µRFA). Dabei wird die Probe mittels eines motorisierten Probentischs im Elektronen- beziehungsweise Röntgenstrahl platziert. Die eigentliche Messung erfolgt im Reflexionsmodus. Zur Auswertung werden die für die interessierenden chemischen Elemente charakteristischen Fluoreszenzlinien ausgewertet und ihre Intensität über einer Fläche als farbcodierter Konturplot dargestellt.

Eine Begleiterscheinung alterungsbedingter Materialveränderungen ist häufig die Rissbildung. Größe und Struktur von Rissen sind für die Beurteilung der Schädigung wichtig. Eine zerstörungsfreie Analyse der Risse im gesamten Bauteil erlaubt die Computertomografie (Abb. 3). Sie gestattet es, ganze Bauteile zu untersuchen. Die Röntgen-Computertomografie basiert auf materialspezifischer Absorption von Röntgenstrahlung. Ein beliebig geformtes Objekt kann damit schichtweise erfasst werden. Ausgewählte Querschnitte werden als Verteilung des röntgenografischen Absorptionskoeffizienten (röntgenografische „Dichte“) bildhaft als Matrix dargestellt. Aus diesen Einzelschichten lässt sich die Absorptionsstruktur eines Objekts vollständig dreidimensional rechnergestützt rekonstruieren. Im Zusammenspiel mit dem minimalen Aufwand zur Probenvorbereitung ist Computertomografie daher ein vielseitiges zerstörungsfreies Prüfverfahren am Fraunhofer LBF für Proben im Mikromaßstab (2 x 2 x 2 mm) bis hin zu vollständigen Bauteilen (750 x 600 mm).

Mehr Weniger

23.09.2016

Elektrochemische Messung: Korrosivität von Kunststoffschmelzen schnell bestimmen

Verschleiß und Korrosion sind gravierende Vorkommnisse in der Kunststoffverarbeitung. Wer ein leistungsfähiges Compound entwickeln will, muss häufig eine Vielzahl an Formulierungen durch Schmelzecompoundierung zubereiten und im Hinblick auf die gewünschten Eigenschaften und gegebenenfalls die Korrosivität der Schmelze testen. Analog stellt sich das Problem bei der Auswahl des Werkstoffes für ein Aggregat, mit dem eine korrosive Formulierung verarbeitet werden soll. Hierzu ist gegebenenfalls eine größere Zahl unterschiedlicher Legierungen zu prüfen. Wissenschaftler am Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF haben jetzt ein neues elektrochemisches Verfahren entwickelt, das sie als vorteilhaft für die Entwicklung neuer Formmassen ansehen, da es mit geringen Materialmengen auskommt. Damit stehen am Fraunhofer LBF nun zwei Methoden zur Prüfung der Korrosivität von Kunststoffformmassen oder der Korrosionsbeständigkeit von Stählen zur Verfügung: Neben dem neuen Verfahren der bereits etablierte Plättchentest. Den Einsatz beider Verfahren bietet das Institut als Dienstleistung an. Darüber hinaus können Kunden für die Nutzung des elektrochemischen Verfahrens eine Lizenz erhalten.

Abhängig von ihrer Zusammensetzung sind manche Polymerformulierungen extrem korrosiv gegenüber den Werkstoffen, aus denen beispielsweise Extrudergehäuse oder Schnecken gefertigt sind. Typisch hierfür sind beispielsweise bestimmte in den letzten Jahren entwickelte halogenfreie Flammschutzmittel auf Diethylphosphinatbasis. Die betreffenden Additive können dabei in der Schmelze direkt mit den Werkstoffen reagieren oder sie bilden durch thermische Zersetzung aggressive Chemikalien, wie anorganische Säuren. Auf der anderen Seite verhalten sich bestimmte Zusatzstoffe als Korrosionsschutzmittel. Allerdings können sie sich nachteilig auf die Zieleigenschaften auswirken.

Traditionelle Prüfung mit Nachteilen

Zur Bewertung von Verschleiß beziehungsweise Korrosion ist die DKI-Plättchenapparatur (Deutsches Kunststoff-Institut, jetziger Bereich Kunststoffe des Fraunhofer LBF) sehr gut etabliert. Nachteil dieser Methode ist der hohe handwerkliche Aufwand und der Materialbedarf: Pro Formulierung und Plättchenpaar werden meistens 5-30 Kilogramm Granulat benötigt. Formulierungen, die neue Chemikalien - typischerweise in Anteilen von einigen Prozenten - beinhalten, lassen sich mit der Plättchenapparatur kaum testen, wenn die neuen Substanzen zunächst nur in Gramm-Mengen zur Verfügung stehen.

Neue Screening-Methode entwickelt

Vor dem Hintergrund des hohen Materialbedarfs des Plättchentests haben Wissenschaftler des Fraunhofer LBF eine Screening-Methode entwickelt. Dieses patentierte Verfahren ermöglicht eine schnelle Aussage über die Korrosivität einer Formulierung beziehungsweise über die Beständigkeit von unterschiedlichen Legierungen gegenüber einer korrosiven Schmelze. Es sind nur rund 0,5 bis 1 Kilogramm an Formmasse erforderlich. Auf diese Weise können auch neue Rohstoffe oder Additive, die zunächst nur in geringen Mengen zur Verfügung stehen, getestet werden. 

Die Methode beruht im Kern auf einer elektrochemischen Messung in der Kunststoffschmelze. Dazu stehen sich in einem Messwerkzeug mit rechteckigem Schmelzekanal zwei Elektroden gegenüber, von denen eine die Prüfelektrode darstellt, die andere die Gegenelektrode (Schema in Abb. 1). Die Prüfelektrode besteht aus einem Werkzeugstahl, die Gegenelektrode zum Beispiel aus einem Edelmetall. Beide Elektroden sind über ein Elektrometer verbunden. Der sich einstellende Kurzschlussstrom zwischen den Elektroden stellt ein Maß für die Korrosivität der Schmelze dar. 

Für vergleichende Untersuchungen nimmt man bei der Plättchenapparatur häufig stellvertretend für verschiedene Werkzeugstähle einen wenig abrasions- und korrosionsbeständigen Stahl. Auch bei der neuen elektrochemischen Korrosionsmessung eignet sich so ein Stahl sehr gut als Sonde zur vergleichenden Ermittlung der Korrosivität von Compounds.

In Abb. 2 ist als Beispiel der Screening-Parameter „Korrosivität“ für unterschiedliche Polyamid/Glasfaser-Typen als Funktion der Abtragrate im Plättchenversuch aufgetragen. Es handelt sich dabei sowohl um am LBF hergestellte experimentelle Compounds von PA66/GF mit halogenfreien Flammschutzformulierungen als auch um typische flammgeschützte kommerzielle Polyamid/Glasfaser-Formmassen namhafter Hersteller. Vertreten sind neben PA66 auch Hochtemperaturpolyamide und ein PA6-Typ. Neben einem mit bromhaltigem Flammschutzmittel ausgerüsteten Hochtemperaturpolyamid sind alle übrigen Typen halogenfrei flammgeschützt. Die Korrelation ist sehr gut.

Um mehrere unterschiedliche Werkzeugstähle simultan mit derselben Schmelze testen zu können, wurde ein Messwerkzeug entwickelt, in dem entlang des Schmelzekanals fünf Elektrodenpaare angeordnet sind.

Mehr Weniger

16.09.2016

Creating sustainable products: Fraunhofer LBF investigates recycling of halogen-free flame retardant plastics

Zero plastics to landfill increases the need to mechanical recycling of plastics. This also applies to flame retardant plastics which are increasingly formulated with halogen-free flame retardants. The use of flame retardants can prevent the fire spreading or slow its development. According to EU regulations, plastic waste recycling is to increase in quality, and recycling rates should continue to rise: the EU target for 2020 is 70 percent. So it is all the more important for economically viable recycling to conduct the necessary basic studies in good time. The Fraunhofer Institute for Structural Durability and System Reliability LBF has therefore launched a new research project on the recycling of halogen-free flame retardant plastics. For the first time, the project will provide answers to the recyclability of halogen-free flame retardant plastics. Small and medium-sized companies in particular should be able to reduce costs in this highly market-relevant area and produce enhanced quality products with high safety standards.

In Europe, around 70 percent halogen-free PIN flame retardants based on phosphorus (P), inorganic substances (I) and nitrogen (N) are already in use. Their share will grow as they meet the requirement of many users for good environmental compatibility, cost efficiency and reliable flame proofing in the final application. So far very little is known about the mechanical recycling of these plastics although, with an estimated value of three billion euros, they are very important economically in the European market. This concerns mainly the electrical and electronics industry, construction and transportation. The results of the project are significant for polymer, flame retardant and additive manufacturers, compounders, masterbatch producers, producers of plastic parts, recycling companies and consulting firms.

Ensuring recyclability

For the first time, the new multi-year research project of the Fraunhofer LBF will provide answers to the recyclability of halogen-free flame retardant plastics and suggest ways to ensure recyclability. At the same time it will make an important contribution to the socio-political issues of resource efficiency and security. The research will be carried out as part of the project funding Industrial Community Research of the AiF (German Federation of Industrial Research Associations, here Forschungsgesellschaft Kunststoffe e.V., www.fgkunststoffe.de) and with the participation of member companies of PINFA. PINFA (Phosphorus, Inorganic & Nitrogen Flame Retardants Association, www.pinfa.org) represents manufacturers and users of halogen-free flame retardants and is part of the European Chemical Industry Council (Cefic). 

The companies concerned will benefit from the new research project in many ways. They will be better able to use their own product waste in the case of flame-retardant formulations and to save costs. The findings will lead to enhanced quality products with high safety standards, potential hazards of degradation products will be identified and can be eliminated. . Competitive advantages will continue to exist for using recycled plastics as a marketing tool and for constructing new products based on them.

Companies will be able to implement results immediately

As the institute draws on application-relevant and current commercial formulations, interested companies will be able to implement the findings immediately and directly. The ability to reuse production waste using the knowledge gained will generate a definite competitive edge. When using recyclates, it will be possible to minimize risks such as product liability based on the data compiled.

Due to the targeted mechanical recovery of recycled halogen-free plastics, the research project will reduce the use of raw materials and contribute to conserving and using resources more efficiently. Thanks to the improved properties of recycled plastics, such as the mechanical characteristics, it will be possible to open up new applications for these recyclates and build up new business areas. With a market volume in Europe of three billion euros for halogen-free flame-retardant plastics, the Fraunhofer LBF estimates the potential cost saving due to using production waste at 150 million euros per year. The potential value for used plastics is significantly higher.

Recycling additives play an important part in quality improvement in the mechanical recycling of plastics. With the addition of customized stabilizers, compatibilizers and reactive additives, recycled materials achieve qualities that can compete with those of new material. The number of recyclate additives has increased considerably in recent years. The difficulty arising from this for producers is how to develop the best solution technically and economically for the desired property profile. This is where the Fraunhofer LBF with its plastics division is available as a neutral partner that is continuously extending its knowledge of recyclates. 
 

Mehr Weniger

14.09.2016

Duromere mit dem Laser sprengen: Neue Analytik charakterisiert Harze und Härter

Ihre mechanischen Eigenschaften sind exzellent, und sie sind widerstandsfähig gegenüber ho­hen Temperaturen und Chemikalien. Deshalb konnten sich Duromere in den vergangenen Jahrzehnten zu Hochleistungswerkstoffen entwickeln. Zu verdanken haben sie dies hauptsäch­lich den eingesetzten Harzen und Härtern. Da Duromere nicht löslich sind, existierte bisher keine passende analytische Methode, um an Informationen über die chemische Zusammenset­zung dieser zentralen Bausteine zu kommen. Diese Information ist aber essentiell, wenn Schä­den analysiert und neue Produkte entwickelt werden sollen. Daher haben Wissenschaftler des Fraunhofer-Instituts für Betriebs-festigkeit und Systemzuverlässigkeit LBF, basierend auf der Expertise in der Polymertechnik, eine Analytik erarbeitet, mit der sie die verwendeten Harze und Härter in Duromeren erstmalig chemisch charakterisieren können.

Zur Identifizierung der verwendeten Harze und Härter haben die Wissenschaftler des Fraunhofer LBF die „Matrix-freie Laser Desorption/Ionization Time-of-Flight Mass Spectrometry“, kurz LDI-ToF-MS evaluiert. Bei diesem Ansatz „sprengen“ die Wissenschaftler mit einem intensiven Laserimpuls Fragmente aus dem Netzwerk des Duromers heraus. Die Massenzahlen der Fragmente erlauben ihnen dann Rück­schlüsse auf die eingesetzten Harze und Härter. 

Ausgehend von einer Auswahl industriell relevanter Epoxidharze und Härter stellten die Forscher gehär­tete Modellharzsysteme her. Lösungsmittel, Konzentration und die Art der Auftragung der erhaltenen Suspension auf den Probenträger optimierten sie so, dass sie reproduzierbare und von Signalen des Probenträgers freie LDI-ToF-MS-Spektren erhielten. Durch ein systematisches Kombinieren von Harz und Härtern gelang es, generell spezifische Peaks für die untersuchten Harze und Härter zu identifizieren und eine Spektren-Datenbank aufzubauen.

Anschließend untersuchten die Wissenschaftler gehärtete Epoxidharze, die aus einem Härter und zwei Harzen hergestellt wurden. Es zeigte sich, dass sich beide Harz-Komponenten nebeneinander bis zu einem Mindestanteil von zehn Prozent nach-weisen ließen. Abschließend belegten die Darmstädter Kunststoff-Spezialisten in einer Konzeptstudie, dass sich das verwendete Harz und die Art des Härters eines kommer-ziellen 2-Komponenten-Klebers mit der erarbeiteten Spektren-Datenbank erfolgreich identifizieren lassen.

Erstmals konnte das Fraunhofer LBF mit diesen Arbeiten belegen, dass auch nach Aus­härtung Informationen über die eingesetzten Härter und Harztypen zu gewinnen sind. Mit der LDI-ToF-MS steht nun eine Analytik zur Verfügung, die es kunststoffverar­bei­tenden  Unternehmen und Anwendern ermöglicht, ihre Duromere am Fraunhofer LBF charakterisieren zu lassen. Auf diese Weise ergeben sich im Schadensfall neue Wege bei der Ursachenfeststellung, beispielsweise ob die eingesetzten Harze oder Härter bei einem Materialversagen mit der Ausgangscharge chemisch identisch sind. Darüber hinaus können Unternehmen ihre Produkte verbessern oder neuartige Duromere ent­wickeln.

Mehr Weniger

14.09.2016

Kriechenden Kunststoffen auf der Spur: Fraunhofer LBF nimmt neuen Langzeitprüfstand in Betrieb

Manchmal verhalten sich Kunststoffe wie Amphibien - sie kriechen. Dazu kommt es, wenn konstante mechanische Belastungen lange genug auf sie einwirken und sich Kunststoffbauteile dann mit der Zeit immer mehr verformen. Wenn Bauteile ausgelegt werden, muss dieses Kriechverhalten entsprechend berücksichtigt und beispielsweise durch Simulationen vorhergesagt werden. Dazu sind geeignete Materialmodelle erforderlich. Entwickler müssen auch die notwendigen Materialparameter in Abhängigkeit von Zeit, Temperatur und Beanspruchungszustand präzise ermitteln. Unterstützung bekommen sie nun vom Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF. Im Leistungsfeld Polymertechnik haben Wissenschaftler einen Langzeitprüfstand völlig neu konzipiert, mit dem sie das mechanische Langzeitverhalten von Kunststoffen messen, modellieren und simulieren können.   

An moderne Hochleistungskunststoffe werden heute höchste Anforderungen hinsichtlich Last- und Temperaturgrenzen gestellt. Nach einer Recherche des Fraunhofer LBF zeigte sich, dass am Markt vorhandene Prüfeinrichtungen diese Ansprüche häufig nicht mehr abbilden können. Auch die Art der Lastaufbringung und Dehnungsmessung lässt bei herkömmlichen Langzeitprüfständen viele Fragen offen. Angesichts der im Institut gesammelten Erfahrungen lag es nahe, ein eigenes Prüfstandkonzept umzusetzen. Der Bereich Kunststoffe des Fraunhofer LBF beschäftigt sich seit mehr als 30 Jahren mit Werkstoffmodellen zur Beschreibung des Kriechverhaltens unter verschiedenen Beanspruchungszuständen und Temperaturen. Darüber hinaus verfügt das Institut über eine ausgewiesene Expertise im Bau von Prüf- und Messeinrichtungen. 

Der neu konzipierte Langzeitprüfstand hebt fast alle bekannten Einschränkungen herkömmlicher Prüfeinrichtungen auf. Beispielsweise hängt die stoßfreie Lastaufbringung bei vielen Prüfständen sehr stark vom Bediener ab. Der neue Prüfstand des Fraunhofer LBF umgeht diesen menschlichen Faktor weitest möglich, indem die Lastaufbringung elektronisch geregelt wird und somit genau definiert erfolgen kann. Die optische berührungslose Dehnungsmessung erlaubt eine hohe Auflösung. Sie ist notwendig, um an hochsteifen Werkstoffen die Werkstoffkennwerte zu ermitteln.  

Erstmals ist es mit dem neuen Langzeitprüfstand auch möglich, die Querdehnung exakt zu ermitteln, was die Materialmodelle und damit die Vorhersagegüte von Simulationen erheblich verbessert. Es können Prüftemperaturen von Raumtemperatur bis 250 °C abgedeckt werden. Die neu entwickelte Spannmechanik macht die Prüfung von Probekörpern mit unterschiedlichen Abmessungen möglich. Der Prüfstand eignet sich nicht nur für hochsteife Werkstoffe, sondern gleichermaßen für die Kennwertermittlung an Elastomeren und Thermoplastischen Elastomeren.

Über den Bereich Kunststoffe des Fraunhofer LBF

Mit dem Forschungsbereich Kunststoffe, hervorgegangen aus dem Deutschen Kunststoff-Institut DKI, begleitet und unterstützt das Fraunhofer LBF seine Kunden entlang der gesamten Wertschöpfungskette von der Polymersynthese über den Werkstoff, seine Verarbeitung und das Produktdesign bis hin zur Qualifizierung und Nachweisführung von komplexen sicherheitsrelevanten Leichtbausystemen. Der Forschungsbereich ist spezialisiert auf das Management kompletter Entwicklungsprozesse und berät seine Kunden in allen Entwicklungsstufen. Hochleistungsthermoplaste und Verbunde, Duromere, Duromer-Composites und Duromer-Verbunde sowie Thermoplastische Elastomere spielen eine zentrale Rolle. Der Bereich Kunststoffe ist ein ausgewiesenes Kompetenzzentrum für Additivierungs-, Formulierungs- und Hybrid-Fragestellungen. Umfassendes Know-how besteht in der Analyse und Charakterisierung von Kunststoffen und deren Veränderung während der Verarbeitung sowie in der Methodenentwicklung zeitaufgelöster Vorgänge bei Kunststoffen.

Auf der Messe K 2016 in Düsseldorf, 19.-26.10.2016, beteiligt sich das Fraunhofer LBF in Halle 7 am Fraunhofer-Stand SC01.

Mehr Weniger

04.08.2016

Aufklärung in der Schmelzzone: Neuartiges Werkzeug hilft, Compoundierprozess zu optimieren

Rotation, Scherung, Wärme und Druck – soweit ist klar, was es zur Compoundierung von Kunststoffen mithilfe von Doppelschneckenextrudern braucht. Schon seit langem haben sich die Spezialmaschinen in der Kunststoffproduktion bewährt. Aus Forschungssicht blieb bisher allerdings die Frage unbeantwortet, welche Mechanismen beim Anschmelzen und dem damit verbundenen Energieeintrag in die Schmelzzone wirken. Wissenschaftlern aus dem Leistungsfeld Polymertechnik des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF ist es gelungen, mit innovativen Messtechniken einen Einblick in diese Prozesse zu gewinnen. Ihre Erkenntnisse werden der Compoundier-Industrie in Zukunft eine sehr material- und prozessspezifische Gestaltung der Schmelzzone ermöglichen. Unter anderem wird es bei gleicher Prozesssicherheit möglich sein, den Energieeintrag in das Polymer auf das notwendige Minimum zu reduzieren und den gesamten Prozess wesentlich profitabler zu gestalten. In dem optimierten Prozess wird das Polymer thermisch und mechanisch weniger beschädigt, was wiederum die mechanischen Eigenschaften und die chemische Beständigkeit des Produktes verbessert und die Emissionen reduziert, die durch die Verarbeitung entstehen.  

Für die Compoundier-Industrie hat das initiale Aufschmelzen eine große Bedeutung, da bis zu 80 Prozent der gesamten Energie in der Plastifizierzone und hier speziell in der ersten Knetblockstufe eingebracht wird. Ein optimierter beziehungsweise minimierter Energieeintrag hätte daher ein vielversprechendes Potenzial, die Wirtschaftlichkeit zu verbessern und die Materialeigenschaften durch eine schonendere Verarbeitung zu verbessern.

Plastische Deformation wird sichtbar

Für die systematische Untersuchung des Energieeintrages in der Aufschmelzzone gleichläufiger Doppelschneckenextruder hat das Fraunhofer LBF ein neuartiges Werkzeug entwickelt, mit dessen Hilfe sich der Querschnitt der Plastifizierzone visualisieren lässt. Dazu setzen die Wissenschaftler eine Hochgeschwindigkeitskamera ein. Mit einer Auflösung von 2.000 Einzelbildern pro Sekunde konnten sie erstmalig die Bewegung, Deformation und das initiale Aufschmelzen von Kunststoffgranulaten darstellen, dokumentieren und bewerten. Diese Aufnahmen wurden mit einer hochauflösenden Drehmomenten-Messung kombiniert. Auf diese Weise lässt sich nun der mechanische Energieeintrag ortsaufgelöst jedem visualisierten Zustand zuordnen und die theoretische Temperaturerhöhung berechnen.

Mit ihrem neuartigen Blick in die Aufschmelzzone konnten die LBF-Wissenschaftler beispielsweise die plastische Deformation eines Polypropylengranulates beobachten und dokumentieren. Es zeigte sich, dass das Granulat durch eine massive plastische Deformation zum Fließen gebracht wird und lokal initial innerhalb von Sekundenbruchteilen plastifiziert. Dabei wird das Granulat zunächst zwischen der aktiven Flanke und der Zylinderwand verklemmt. Anschließend folgt eine Deformation, welche in zwei Phasen eingeteilt werden kann: Zunächst wird das Granulat verdichtet und in das freie Volumen gepresst. Anschließend wird in dieses vorkompaktierte Volumen massiv Energie durch weitere plastische Deformation eingebracht.

Diese Vorgänge dauern bei einer Schneckendrehzahl von 1200 Umdrehungen pro Minute nur rund fünf Millisekunden. Neben der plastischen Deformation im Zwickelbereich kommt es auch zu einer Kompression vor der aktiven Flanke. Die LBF-Wissenschaftler konnten auch klarstellen, dass neben den Materialeigenschaften vor allem geometrische Aspekte, wie beispielsweise die Granulatgröße und –form sowie das freie Volumen im Knetblockbereich, einen wesentlichen Einfluss auf das Aufschmelzen haben. Die Quantifizierung erfolgt mit einer hochauflösenden Drehmomentenmessung. 

Neben der Quantifizierung der unterschiedlichen Mechanismen liegt eine weitere Herausforderung für das Fraunhofer LBF auch in der Abbildung eines für den Anwender praktikablen Modells. In dieser Frage arbeitet das Institut eng mit der Kunststofftechnik Paderborn (KTP) zusammen. Durch die Kopplung beider Kompetenzen kann ein direkter Mehrwert für die Compoundier-Industrie erzielt werden.  

Über den Bereich Kunststoffe des Fraunhofer LBF

Mit dem Forschungsbereich Kunststoffe, hervorgegangen aus dem Deutschen Kunststoff-Institut DKI, begleitet und unterstützt das Fraunhofer LBF seine Kunden entlang der gesamten Wertschöpfungskette von der Polymersynthese über den Werkstoff, seine Verarbeitung und das Produktdesign bis hin zur Qualifizierung und Nachweisführung von komplexen sicherheitsrelevanten Leichtbausystemen. Der Forschungsbereich ist spezialisiert auf das Management kompletter Entwicklungsprozesse und berät seine Kunden in allen Entwicklungsstufen. Hochleistungsthermoplaste und Verbunde, Duromere, Duromer-Composites und Duromer-Verbunde sowie thermoplastische Elastomere spielen eine zentrale Rolle. Der Bereich Kunststoffe ist ein ausgewiesenes Kompetenzzentrum für Additivierungs-, Formulierungs- und Hybrid-Fragestellungen. Umfassendes Know-how besteht in der Analyse und Charakterisierung von Kunststoffen und deren Veränderung während der Verarbeitung sowie in der Methodenentwicklung zeitaufgelöster Vorgänge bei Kunststoffen.

Mehr Weniger

28.07.2016

Neues Labor macht chemische Synthesen von Kunststoffen im Kilogramm-Maßstab möglich

Wenn Kunststoffe entwickelt werden, darf es gern „ein bisschen mehr“ sein. Denn um verlässliche Aussagen über die Einsatzmöglichkeiten neuer Polymere, Hilfsstoffe und Additive zu treffen, ist es wichtig, sie zu Bauteilen und Prüfkörpern zu verarbeiten sowie unter realitätsnahen Bedingungen charakterisieren und prüfen zu können. Dazu müssen sie allerdings zwingend in ausreichenden Mengen zur Verfügung stehen. Zu diesem Zweck hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF, basierend auf der langjährigen Expertise in der Polymertechnik, ein neues Kilo-Labor eingerichtet, das ein Up-Scaling von Laborsynthesen auf den Kilogramm-Maßstab erlaubt. In Reaktoren und Autoklaven bis zu einem Volumen von 20 Litern können die Wissenschaftler Polymerisationen und organische Synthesen unter verschiedenen Bedingungen durchführen. Die erhaltenen Produkte können sie anschließend praxisnah untersuchen. 

Wenn neue Kunststoffe entwickelt oder existierende optimiert werden sollen, beginnt die Prozesskette häufig mit der Synthese neuer Additive, Monomere und Hilfsstoffe oder der Polymere selbst. Gelingt der grundsätzliche Machbarkeitsnachweis im Labor, werden diese im nächsten Schritt unter realitätsnahen Bedingungen verarbeitet und geprüft. In der Regel sind im chemischen Labor aber nur wenige Gramm einer Substanz synthetisierbar. Das reicht normalerweise aus, um physikalische, chemische oder thermische Eigenschaften der daraus hergestellten Materialien untersuchen zu können. 

Größere Mengen davon sind allerdings notwendig, um verlässliche Aussagen über die Einsatzmöglichkeiten dieser Materialien treffen zu können. Denn insbesondere praxisrelevante Parameter, wie beispielsweise mechanische Eigenschaften, Dauerhaftigkeit, Haptik oder Optik, lassen sich erst beurteilen, wenn die Materialien unter realitätsnahen Bedingungen verarbeitet werden. Dies gilt vor allem für thermoplastische Werkstoffe, bei denen die Prozessparameter beim Verarbeiten einen entscheidenden Einfluss auf die abschließenden Produkteigenschaften haben. Für die Verarbeitung auf praxisrelevanten Maschinen sind mindestens einige hundert Gramm, besser jedoch mehrere Kilogramm, eines Materials nötig. 

Um sowohl eigene Entwicklungen des Instituts als auch solche, die von Industriekunden beauftragt wurden, aus einer Hand unter geeigneten Bedingungen untersuchen zu können, hat das Fraunhofer LBF das neue Kilolabor eingerichtet. Darin ist die Synthese unterschiedlichster Substanzen im Kilogrammmaßstab möglich, so dass diese im eigenen Technikum weiterverarbeitet und für entsprechende Prüfungen bereitgestellt werden können. Hierzu stehen Reaktoren und Autoklaven bis zu einem Volumen von 20 Litern in verschiedenen Ausführungen zur Verfügung, die Reaktionen in Temperaturbereichen von -80° bis 250° Celsius, unter Inertbedingungen, bei Drücken bis zu 60 bar oder im Vakuum ermöglichen. Das Up-scaling einer Reaktion ist dabei mehr als nur eine Vervielfachung des Reaktionsvolumens. Zusätzliche Aspekte, wie eine veränderte Wärmeübertragung, eine sichere Handhabung größerer Mengen an Reaktanden und Produkten sowie deren Vor- und Nachbereitung sind zu berücksichtigen. 

Kilolabor ermöglicht den Brückenschlag

Im neuen Kilo-Labor des Fraunhofer LBF können beispielsweise Reaktionen wie die Synthese von Polymeren mit speziellen Architekturen durchgeführt werden, die etwa als haft- oder phasenvermittelnde Kunststoffadditive eingesetzt werden können, um die mechanischen Eigenschaften, Transparenz oder Adhäsion zu artfremden Materialien zu verbessern. Auch der Einsatz von gasförmigen Monomeren und Reaktanden ist möglich. So können beispielsweise thermoplastische Elastomere aus Styrol und Butadien durch anionische Polymerisation und anschließende Hydrierung hergestellt werden. Weitere Synthesebeispiele sind die Herstellung von wässrigen Polymerdispersionen, die als Bindemittel dienen können, Additive wie beispielsweise Flammschutzmittel oder Stabilisatoren, Härter für Epoxidharze sowie auch die Oberflächenfunktionalisierung von Fasern oder (Nano-)Füllstoffen.

Chemische Lösungsansätze zu speziellen Kundenfragestellungen kann das Fraunhofer LBF mit dem Kilo-Labor auf den nächsten Maßstab übertragen. Die daraus hervorgehenden Produkte können entweder im LBF-eigenen Verarbeitungstechnikum weiterverarbeitet oder dem Kunden für eigene Anwendungstests bereitgestellt werden. Kunden, die bereits eine Entwicklung im Labormaßstab erarbeitet haben, können diese vom LBF auf den Kilogrammmaßstab übertragen lassen, um so deren Anwendbarkeit beurteilen zu können.

Mehr Weniger

21.07.2016

Leichtbaupotenziale von Kunststoffen besser nutzen mit maßgeschneiderter Simulation

Kunststoffe und Leichtbau sind eng miteinander verknüpft. Nicht nur das günstige Verhältnis von Festigkeit und Gewicht, sondern auch die effiziente Herstellung im Spritzgussverfahren und dadurch mögliche gestalterische Freiheiten stehen auf der Habenseite. Jedoch verhalten sich thermoplastische Kunststoffe mechanisch sehr komplex. Um Bauteile je nach Beanspruchung dimensionieren und das Leichtbaupotenzial effizient nutzen zu können, sind daher verlässliche Kennwerte unabdingbar. Zur Simulation dieser Materialien ist eine integrative Simulationskette nötig, die das Herstellungsverfahren berücksichtigt. Dies ist in frühen Entwicklungsstadien jedoch oft nicht möglich, da die finale Bauteilgeometrie und Herstellungsparameter noch nicht bekannt sind. Für die Vorauslegung von Bauteilen werden daher alternative Methoden zu diesem hochkomplexen Verfahren benötigt. Das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF entwickelt mit der reduzierten integrativen Simulation eine Methode, mit der sich vereinfachte Berechnungsmodelle für kurzfaserverstärkte Polymerbauteile erstellen lassen. Mehr dazu auf der K 2016, Halle 7, Fraunhofer-Stand SC01, Düsseldorf, 19.-26.10.2016

Die reduzierte integrative Simulation kommt mit Standard-Materialmodellen aus der Struktursimulation aus. Schon in frühen Auslegungsphasen kann die Methode die Materialanisotropie im Bauteil berücksichtigen. Das Verfahren hilft insbesondere Konstrukteuren in produzierenden mittelständischen Unternehmen, die mechanische Belastbarkeit von Bauteilen in frühen Phasen der Produktentwicklung präziser abzuschätzen, was die Entwicklungszeiten verkürzt und die Kosten senkt. Insgesamt lässt sich, im Vergleich zum aktuellen Stand der Technik, in der Vorauslegung eine deutliche Verbesserung der Abbildungsgüte von Struktursimulationen erreichen.

Komplexem Materialverhalten auf der Spur
Der Erfolg vieler Leichtbauprodukte in der Automobil-, Luftfahrt- und Freizeitindustrie basiert auf dem Einsatz spritzgegossener, kurzglasfaserverstärkter Kunststoffe. Um die vorhandenen Potenziale zu nutzen, müssen diese Kunststoffe zielgenau ausgelegt und simuliert werden. Bedingt durch die Herstellung sind Fasern in derartigen Bauteilen lokal unterschiedlich orientiert und unterschiedlich lang. Es kommt dadurch zu lokal unterschiedlichem anisotropem Materialverhalten. Dies betrifft die Steifigkeit, Festigkeit und das Versagensverhalten. Für die konstruktive Auslegung von Bauteilen im Produktentwicklungsprozess braucht es daher eine adäquate Strategie, mit der das komplexe mechanische Bauteilverhalten bei ausreichender Genauigkeit vorhergesagt werden kann.

Die bislang verfügbaren Methoden für die Auslegung kurzfaserverstärkter Thermoplaste lassen sich in drei Gruppen unterteilen. Bei der stark vereinfachenden Isotropierung des Materialverhaltens werden aus unterschiedlichen Belastungsrichtungen Mittelwerte gebildet, um das Materialverhalten isotrop beschreiben zu können. Der zweite Ansatz ist die phänomenologische Materialbetrachtung unter Berücksichtigung der Richtungsabhängigkeit, bei der das Materialverhalten unter verschiedenen  Belastungsrichtungen abgebildet wird. Der dritte Ansatz umfasst die Methoden der Mikromechanik. Um eine richtungsabhängige Materialmodellierung bei kurzfaserverstärkten Kunststoffen vornehmen zu können, müssen Informationen zur Faserorientierung, beziehungsweise dem Grad der Faserorientierung und der Faserlängenverteilung in der Modellierung berücksichtigt werden. Der Orientierungsgrad kann sich theoretisch von vollständiger Orientierung in eine Raumrichtung zu völlig regelloser Orientierung bewegen.

Eine maximal detaillierte Auslegung von spritzgegossenen kurzfaserverstärkten Bauteilen wird mit der sogenannten integrativen Simulationskette ermöglicht. Das Fraunhofer LBF beherrscht diesen Prozess in vollem Umfang. Dabei handelt es sich um einen hochkomplexen Prozess mit mehreren Einzelschritten, die idealerweise auch einzeln validiert werden. Darüber hinaus ist das Versuchsprogramm umfangreicher als zum Beispiel bei einem Ansatz, der die Materialkennwerte isotropiert. Dies macht die integrative Simulation für einen Großteil der Unternehmen erst dann wirtschaftlich, wenn nach der Vorauslegungsphase das Material und die Prozessparameter festgelegt wurden.

Die Wissenschaftler des Fraunhofer LBF entwickeln daher eine alternative Methode zur vollständigen integrativen Simulationskette. Ihr Ziel: eine vereinfachte Auslegungsstrategie für kurzfaserverstärkte Polymerbauteile, die mit Standard-Materialmodellen aus der Struktursimulation auskommt. Diese Strategie soll dem Konstrukteur Sicherheit in der Durchführung sowie eine Fehlerabschätzungsmöglichkeit geben und - im Vergleich zum aktuellen Stand der Technik - eine deutliche Verbesserung der Abbildungsgüte von Struktursimulationen erreichen.

Bei der reduzierten integrativen Simulation des Fraunhofer LBF dient die aus einfachen CAD-Spritzgieß-Simulationstools ermittelte Fließrichtung als Basis für eine Auslegung mit richtungsabhängigen Materialmodellen. Durch Faserorientierungsmessungen und Simulationsstudien an Probenbauteilen werden geometrieabhängige Anpassungsfaktoren für mechanische Kennwerte ermittelt und eine Gruppierung hinsichtlich des richtungsabhängigen Verhaltens vorgenommen. Phänomenologische Materialmodelle und bauteilbezogene Handlungsempfehlungen werden systematische gegenübergestellt. In Experimenten werden die Materialkennwerte ermittelt.

Über den Forschungsbereich Kunststoffe im Fraunhofer LBF
Mit dem Forschungsbereich Kunststoffe, hervorgegangen aus dem Deutschen Kunststoff-Institut DKI, begleitet und unterstützt das Fraunhofer LBF seine Kunden entlang der gesamten Wertschöpfungskette von der Polymersynthese über die Formulierung des Werkstoffs, seine Verarbeitung und das Produktdesign bis hin zur Qualifizierung und Nachweisführung von komplexen sicherheitsrelevanten Leichtbausystemen. Der Forschungsbereich ist spezialisiert auf das Management kompletter Entwicklungsprozesse und berät seine Kunden in allen Entwicklungsstufen. Hochleistungsthermoplaste und Verbunde, Duromere, Duromer-Composites und Duromer-Verbunde sowie Thermoplastische Elastomere spielen eine zentrale Rolle. Der Bereich Kunststoffe ist ein ausgewiesenes Kompetenzzentrum für Additivierungs-, Formulierungs- und Hybrid-Fragestellungen. Umfassendes Know-how besteht in der Analyse und Charakterisierung von Kunststoffen und deren Veränderung während der Verarbeitung sowie in der Methodenentwicklung zeitaufgelöster Vorgänge bei Kunststoffen.

Mehr Weniger

Über uns

Firmenporträt

Das Fraunhofer LBF in Darmstadt entwickelt, bewertet und realisiert im Kundenauftrag maßgeschneiderte Lösungen für maschinenbauliche Komponenten und Systeme, vor allem für sicherheitsrelevante Bauteile und Systeme. Dies geschieht in den Leistungsfeldern Schwingungstechnik, Leichtbau, Zuverlässigkeit und Polymertechnik. Neben der Bewertung und optimierten Auslegung passiver mechanischer Strukturen werden aktive, mechatronisch-adaptronische Funktionseinheiten entwickelt und prototypisch umgesetzt. Parallel werden entsprechende numerische sowie experimentelle Methoden und Prüftechniken vorausschauend weiterentwickelt. Die Auftraggeber kommen aus dem Automobil- und Nutzfahrzeugbau, der Schienenverkehrstechnik, dem Schiffbau, der Luftfahrt, dem Maschinen- und Anlagenbau, der Energietechnik, der Elektrotechnik, dem Bauwesen, der Medizintechnik, der chemischen Industrie und weiteren Branchen. Sie profitieren von ausgewiesener Expertise der über 400 Mitarbeiter und modernster Technologie auf mehr als 11 560 Quadratmetern Labor- und Versuchsfläche.

Über den Bereich Kunststoffe des Fraunhofer LBF

Mit dem Forschungsbereich Kunststoffe, hervorgegangen aus dem Deutschen Kunststoff-Institut DKI, begleitet und unterstützt das Fraunhofer LBF seine Kunden entlang der gesamten Wertschöpfungskette von der Polymersynthese über den Werkstoff, seine Verarbeitung und das Produktdesign bis hin zur Qualifizierung und Nachweisführung von komplexen sicherheitsrelevanten Leichtbausystemen. Der Forschungsbereich ist spezialisiert auf das Management kompletter Entwicklungsprozesse und berät seine Kunden in allen Entwicklungsstufen. Hochleistungsthermoplaste und Verbunde, Duromere, Duromer-Composites und Duromer-Verbunde sowie Thermoplastische Elastomere spielen eine zentrale Rolle. Der Bereich Kunststoffe ist ein ausgewiesenes Kompetenzzentrum für Additivierungs-, Formulierungs- und Hybrid-Fragestellungen. Umfassendes Know-how besteht in der Analyse und Charakterisierung von Kunststoffen und deren Veränderung während der Verarbeitung sowie in der Methodenentwicklung zeitaufgelöster Vorgänge bei Kunststoffen.

www.lbf.fraunhofer.de/kunststoffe

Mehr Weniger

Unternehmensdaten

Umsatz

20 - 100 Mill. US $

Exportanteil

max. 25%

Anzahl der Beschäftigten

101 - 500

Gründungsjahr

1938

Geschäftsfelder

Dienstleistungen für die Kunststoff- und Kautschuk-Industrie

Zielgruppen
  • Chemische Industrie
  • Maschinenbau
  • Fahrzeugbau / Luft- und Raumfahrt
  • Sonstige Industrien

Firmeninfo als PDF